Skip to main content

Magic methyls and magic carpets


A few days ago, there was this post by Derek Lowe, reviewing a recent paper on magic methyls and their occurrence and impact in medicinal chemistry practice. They're called 'magic' because, although methyls are relatively insignificant in terms of size, polarity or lipophilicity, the addition of one in a compound can sometimes have a dramatic impact in its potency - much more that it would be attributed to any simple desolvation effects.

More generally, the 'magic methyl' phenomenon pops up in discussions about the validity of the molecular similarity principle, descriptors, QSAR - almost everything in the applied Chemoinformatics field - and belongs to the general class of 'activity cliffs'. 

Methylation is a chemical transformation, and transformations along with their impact on a property of choice can be easily mined and studied using the so-called Matched Molecular Pairs analysis (MMPA). We already have a comprehensive database of all the matched pairs and transformations in ChEMBL, so it was relatively straightforward to extract all the methylations (H>>CH3) recorded in ChEMBL_17 and analyse their impact in binding affinity. (b.t.w., MMPs are coming to the ChEMBL interface soon, so look out for this feature if you are interested in this area).

So, in more detail, I extracted all the H>>CH3 pairs and joined them with their pActivities (Ki, IC50, EC50) against human proteins as reported in the literature (our data validity flags were quite useful in this case). The trick here is to only consider molecule pairs tested against the same assay, so that their respective activities are directly comparable and one can safely subtract one from the other.

I ended up with 37,771 data points - much more than another recent publication that looked at this. Here's how the histogram of Delta pActivity (log units) looks like:

As you can see, the scale tilts slightly to the left of zero, meaning that methylation has overall neutral to negative effect on binding affinity. This is not the first time people see this. There are indeed, however, several examples (~2.3K out of 37.8K, to be exact) of magic methyls with more than 10-fold increase in activity. More about this later.

Some of you will ask: 'OK, but what about the context? - methylation of a carbon, nitrogen or oxygen is not the same'. You're right, it's not. So I trellised the above plot by a perception of context - i.e. whether the methylation happens next to an aromatic/aliphatic C or N or next to an oxygen:
The same trend, more or less, is observed with the exception of the aromatic carbon context, whereby methylation seems to have more favourable effect that expected by the overall distribution. Perhaps that could be explained by introducing torsional and planarity changes, etc. For a more thorough explanation of this, see here

Here are some examples of 'magic methyls' in the literature:

The take home message is: Magic methyls, unlike magic carpets, do exist but there are also equally as many, or even more, 'nasty' methyls. However, both of them are just a rather small minority compared to the 'boring' methyls - i.e. methyls with minimal or zero impact on potency.

It's just human nature to remember the few exceptions and outliers and forget the vast evidence to the contrary. However, isolating and understanding such edge cases and black swans is what could make the difference in drug discovery. 

George

Comments

Noel O'Boyle said…
So are "magic methyls" just another way of saying, "there is a part on the RHS of the normal curve which is a long way from the mean"? That is, is it a zero information content phrase.
kott said…
"there is a part on the RHS of the normal curve which is a long way from the mean" - I don't think this is a catchy title...

Popular posts from this blog

ChEMBL 34 is out!

We are delighted to announce the release of ChEMBL 34, which includes a full update to drug and clinical candidate drug data. This version of the database, prepared on 28/03/2024 contains:         2,431,025 compounds (of which 2,409,270 have mol files)         3,106,257 compound records (non-unique compounds)         20,772,701 activities         1,644,390 assays         15,598 targets         89,892 documents Data can be downloaded from the ChEMBL FTP site:  https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_34/ Please see ChEMBL_34 release notes for full details of all changes in this release:  https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_34/chembl_34_release_notes.txt New Data Sources European Medicines Agency (src_id = 66): European Medicines Agency's data correspond to EMA drugs prior to 20 January 2023 (excluding vaccines). 71 out of the 882 newly added EMA drugs are only authorised by EMA, rather than from other regulatory bodies e.g.

New SureChEMBL announcement

(Generated with DALL-E 3 ∙ 30 October 2023 at 1:48 pm) We have some very exciting news to report: the new SureChEMBL is now available! Hooray! What is SureChEMBL, you may ask. Good question! In our portfolio of chemical biology services, alongside our established database of bioactivity data for drug-like molecules ChEMBL , our dictionary of annotated small molecule entities ChEBI , and our compound cross-referencing system UniChem , we also deliver a database of annotated patents! Almost 10 years ago , EMBL-EBI acquired the SureChem system of chemically annotated patents and made this freely accessible in the public domain as SureChEMBL. Since then, our team has continued to maintain and deliver SureChEMBL. However, this has become increasingly challenging due to the complexities of the underlying codebase. We were awarded a Wellcome Trust grant in 2021 to completely overhaul SureChEMBL, with a new UI, backend infrastructure, and new f

Accessing SureChEMBL data in bulk

It is the peak of the summer (at least in this hemisphere) and many of our readers/users will be on holiday, perhaps on an island enjoying the sea. Luckily, for the rest of us there is still the 'sea' of SureChEMBL data that awaits to be enjoyed and explored for hidden 'treasures' (let me know if I pushed this analogy too far). See here and  here for a reminder of SureChEMBL is and what it does.  This wealth of (big) data can be accessed via the SureChEMBL interface , where users can submit quite sophisticated and granular queries by combining: i) Lucene fields against full-text and bibliographic metadata and ii) advanced structure query features against the annotated compound corpus. Examples of such queries will be the topic of a future post. Once the search results are back, users can browse through and export the chemistry from the patent(s) of interest. In addition to this functionality, we've been receiving user requests for  local (behind the

New Drug Approvals - Pt. XVII - Telavancin (Vibativ)

The latest new drug approval, on 11th September 2009 was Telavancin - which was approved for the treatment of adults with complicated skin and skin structure infections (cSSSI) caused by susceptible Gram-positive bacteria , including Staphylococcus aureus , both methicillin-resistant (MRSA) and methicillin-susceptible (MSSA) strains. Telavancin is also active against Streptococcus pyogenes , Streptococcus agalactiae , Streptococcus anginosus group (includes S. anginosus, S. intermedius and S. constellatus ) and Enterococcus faecalis (vancomycin susceptible isolates only). Telavancin is a semisynthetic derivative of Vancomycin. Vancomycin itself is a natural product drug, isolated originally from soil samples in Borneo, and is produced by controlled fermentation of Amycolatopsis orientalis - a member of the Actinobacteria . Telavancin has a dual mechanism of action, firstly it inhibits bacterial cell wall synthesis by interfering with the polymerization and cross-linking of peptid

A python client for accessing ChEMBL web services

Motivation The CheMBL Web Services provide simple reliable programmatic access to the data stored in ChEMBL database. RESTful API approaches are quite easy to master in most languages but still require writing a few lines of code. Additionally, it can be a challenging task to write a nontrivial application using REST without any examples. These factors were the motivation for us to write a small client library for accessing web services from Python. Why Python? We choose this language because Python has become extremely popular (and still growing in use) in scientific applications; there are several Open Source chemical toolkits available in this language, and so the wealth of ChEMBL resources and functionality of those toolkits can be easily combined. Moreover, Python is a very web-friendly language and we wanted to show how easy complex resource acquisition can be expressed in Python. Reinventing the wheel? There are already some libraries providing access to ChEMBL d