Skip to main content

New Drug Approvals 2013 - Pt. VIII - Fluticasone furoate and Vilanterol (Breo ElliptaTM)



ATC Code: R03AK10
Wikipedia: Vilanterol

On May 10th, the FDA approved Vilanterol (Tradename: Breo Ellipta; Research Code: GW-642444M), a long-acting beta2-adrenergic agonist, in combination with the already approved fluticasone furoate, an inhaled corticosteroid, for the long-term maintenance treatment of bronchospasm associated with chronic obstructive pulmonary disease (COPD).

Chronic obstructive pulmonary disease (COPD) is characterised by the occurrence of chronic bronchitis or emphysema, a pair of commonly co-existing diseases of the lungs in which the airways become narrowed. Bronchial spasms, a sudden constriction of the muscles in the walls of the bronchioles, occur frequently in COPD.

Vilanterol is a new long-acting beta2 receptor agonist that through the activation of the beta2 adrenergic receptors present in the bronchial smooth muscle, leads to bronchodilation, and consequently eases the symptoms of COPD.

The beta2 adrenergeic receptor (Uniprot: P07550; ChEMBL: CHEMBL210) belongs to the G-protein coupled receptor (GPCR) type 1 family, and binds the endogenous neurotransmitter adrenaline. Since it is coupled to a Gs protein, its activation leads ultimately to an increase in cyclic AMP (cAMP), which cause relaxation of bronchial smooth muscle and inhibition of release of mediators of immediate hypersensitivity from cells, especially from mast cells.

>ADRB2_HUMAN Beta-2 adrenergic receptor
MGQPGNGSAFLLAPNGSHAPDHDVTQERDEVWVVGMGIVMSLIVLAIVFGNVLVITAIAK
FERLQTVTNYFITSLACADLVMGLAVVPFGAAHILMKMWTFGNFWCEFWTSIDVLCVTAS
IETLCVIAVDRYFAITSPFKYQSLLTKNKARVIILMVWIVSGLTSFLPIQMHWYRATHQE
AINCYANETCCDFFTNQAYAIASSIVSFYVPLVIMVFVYSRVFQEAKRQLQKIDKSEGRF
HVQNLSQVEQDGRTGHGLRRSSKFCLKEHKALKTLGIIMGTFTLCWLPFFIVNIVHVIQD
NLIRKEVYILLNWIGYVNSGFNPLIYCRSPDFRIAFQELLCLRRSSLKAYGNGYSSNGNT
GEQSGYHVEQEKENKLLCEDLPGTEDFVGHQGTVPSDNIDSQGRNCSTNDSLL

There are 11 resolved 3D structures for this protein with vary degrees of resolution (2.40 to 3.50 &#197) and different fusion protocols. For instance, 3ny8, is a fused protein of the human beta2 adrenergeic receptor with Lysozyme Bacteriophage T4, with a resolution of 2.84 &#197 and an inverse agonist bound to it (ICI-118,551, ChEMBL: CHEMBL513389):


The full list of PDBe entries can be found here.

The -terol USAN/INN stem covers bronchodilators structurally related with phenethylamine. Members of these class include for example Salmeterol (ChEMBL: CHEMBL1263), Formoterol (ChEMBL: CHEMBL1256786) and Indacaterol (ChEMBL: CHEMBL1095777), all long-acting beta2-adrenergic agonists also approved for the management of COPD. For a full list of compounds check ChEMBL.


Vilanterol (IUPAC Name: 4-[(1R)-2-[6-[2-[(2,6-dichlorophenyl)methoxy]ethoxy]hexylamino]-1-hydroxyethyl]-2-(hydroxymethyl)phenol; Canonical smiles: OCc1cc(ccc1O)[C@@H](O)CNCCCCCCOCCOCc2c(Cl)cccc2Cl; ChEMBL: CHEMBL1198857; PubChem: 10184665; ChemSpider: 8360167; Standard InChI Key: DAFYYTQWSAWIGS-DEOSSOPVSA-N) is a synthetic small molecule, with a molecular weight of 486.4 Da, 6 hydrogen bond acceptors, 4 hydrogen bond donors, and has an ALogP of 4.22. The compound is therefore fully compliant with the rule of five.

Breo Ellipta is available as a dry powder inhaler and the recommended daily dose is one inhalation of fluticasone furoate/vilanterol 100/25 mcg. Following inhalation, vilanterol peak plasma concentrations are reached within 10 minutes, and its absolute bioavailability is 27.3%. At steady state, following intravenous administration, the mean volume of distribution of vilanterol (Vd/F) was 165L in healthy subjects. Vilanterol is strongly bound to human plasma proteins (93.3 %).

Vilanterol is primarily metabolized in the liver by CYP3A4. Therefore, concomitant administration of potent CYP3A4 inhibitors should be avoided. Vilanterol metabolites are primarily excreted in urine (70%) and feces (30%). The effective half-life (t1/2) for Vilanterol is approximately 21 hours in patients with COPD.

Breo Ellipta has been issued with a black box warning due to Vilanterol increased risk of asthma-related death, a known risk to all long-acting beta2-adrenergic agonists.

The license holder for Breo ElliptaTM is GlaxoSmithKline, and the full prescribing information can be found here.

Comments

Popular posts from this blog

New SureChEMBL announcement

(Generated with DALL-E 3 ∙ 30 October 2023 at 1:48 pm) We have some very exciting news to report: the new SureChEMBL is now available! Hooray! What is SureChEMBL, you may ask. Good question! In our portfolio of chemical biology services, alongside our established database of bioactivity data for drug-like molecules ChEMBL , our dictionary of annotated small molecule entities ChEBI , and our compound cross-referencing system UniChem , we also deliver a database of annotated patents! Almost 10 years ago , EMBL-EBI acquired the SureChem system of chemically annotated patents and made this freely accessible in the public domain as SureChEMBL. Since then, our team has continued to maintain and deliver SureChEMBL. However, this has become increasingly challenging due to the complexities of the underlying codebase. We were awarded a Wellcome Trust grant in 2021 to completely overhaul SureChEMBL, with a new UI, backend infrastructure, and new f

New Drug Approvals - Pt. XVII - Telavancin (Vibativ)

The latest new drug approval, on 11th September 2009 was Telavancin - which was approved for the treatment of adults with complicated skin and skin structure infections (cSSSI) caused by susceptible Gram-positive bacteria , including Staphylococcus aureus , both methicillin-resistant (MRSA) and methicillin-susceptible (MSSA) strains. Telavancin is also active against Streptococcus pyogenes , Streptococcus agalactiae , Streptococcus anginosus group (includes S. anginosus, S. intermedius and S. constellatus ) and Enterococcus faecalis (vancomycin susceptible isolates only). Telavancin is a semisynthetic derivative of Vancomycin. Vancomycin itself is a natural product drug, isolated originally from soil samples in Borneo, and is produced by controlled fermentation of Amycolatopsis orientalis - a member of the Actinobacteria . Telavancin has a dual mechanism of action, firstly it inhibits bacterial cell wall synthesis by interfering with the polymerization and cross-linking of peptid

A python client for accessing ChEMBL web services

Motivation The CheMBL Web Services provide simple reliable programmatic access to the data stored in ChEMBL database. RESTful API approaches are quite easy to master in most languages but still require writing a few lines of code. Additionally, it can be a challenging task to write a nontrivial application using REST without any examples. These factors were the motivation for us to write a small client library for accessing web services from Python. Why Python? We choose this language because Python has become extremely popular (and still growing in use) in scientific applications; there are several Open Source chemical toolkits available in this language, and so the wealth of ChEMBL resources and functionality of those toolkits can be easily combined. Moreover, Python is a very web-friendly language and we wanted to show how easy complex resource acquisition can be expressed in Python. Reinventing the wheel? There are already some libraries providing access to ChEMBL d

Accessing SureChEMBL data in bulk

It is the peak of the summer (at least in this hemisphere) and many of our readers/users will be on holiday, perhaps on an island enjoying the sea. Luckily, for the rest of us there is still the 'sea' of SureChEMBL data that awaits to be enjoyed and explored for hidden 'treasures' (let me know if I pushed this analogy too far). See here and  here for a reminder of SureChEMBL is and what it does.  This wealth of (big) data can be accessed via the SureChEMBL interface , where users can submit quite sophisticated and granular queries by combining: i) Lucene fields against full-text and bibliographic metadata and ii) advanced structure query features against the annotated compound corpus. Examples of such queries will be the topic of a future post. Once the search results are back, users can browse through and export the chemistry from the patent(s) of interest. In addition to this functionality, we've been receiving user requests for  local (behind the

Multi-task neural network on ChEMBL with PyTorch 1.0 and RDKit

  Update: KNIME protocol with the model available thanks to Greg Landrum. Update: New code to train the model and ONNX exported trained models available in github . The use and application of multi-task neural networks is growing rapidly in cheminformatics and drug discovery. Examples can be found in the following publications: - Deep Learning as an Opportunity in VirtualScreening - Massively Multitask Networks for Drug Discovery - Beyond the hype: deep neural networks outperform established methods using a ChEMBL bioactivity benchmark set But what is a multi-task neural network? In short, it's a kind of neural network architecture that can optimise multiple classification/regression problems at the same time while taking advantage of their shared description. This blogpost gives a great overview of their architecture. All networks in references above implement the hard parameter sharing approach. So, having a set of activities relating targets and molecules we can tra