Skip to main content

New Drug Approvals 2012 - Pt. VIII - Peginesatide (OmontysTM)






ATC code: B03XA (incomplete)

On March 27, the FDA approved Peginesatide for the treatment of anemia due to chronic kindney disease (CDK) in patients on dialysis. CDK is a slow but progressive loss of kidney function that can be caused by diabetes mellitushypertension and glomerulonephritis, among others. One of the symptoms in the advanced stages of CDK is anemia, a decrease in the number of red blood cells and hence the hemoglobin (adult hemoglobin: heterotetramer of two copies of P69905 and two copies of P68871) content of the blood. Anemia in patients suffering from CDK is caused by reduced production of erythropoetin, a hormone that regulates the levels of red blood cells and is synthesized predominantly in the cortex of the kidney.

Anemia induced by CDK can be treated by supplying exogenous erythroepotin or analogs of this hormone (e.g. Methoxy polyethylene glycol-epoetin beta, CHEMBL1201829). The collective term for these substances is erythropoiesis-stimulating agent (ESAs). Like endogenous erythropoetin, ESAs exert their effect through binding of the erythropeotin receptor (EpoR, Uniprot P19235) and subsequent activation of the JAK2 (Uniprot O60674) STAT5A (Uniprot P42229) pathway, which results in increased survival of erythrocyte progenitors.

Peginesatide is an ESA with no sequence homology to erythropoetin. Instead, it is composed of two synthetic 21 amino-acid peptides that are linked through a lysine branched PEG chain, as shown below.


The dimeric peptide has a molecular weight of about 4.9 kDa, and the PEG chain has a molecular weight of approximately 40kDa. Peginasetide is dosed as an acetate salt. The empirical formula of the free base is C2031H3950N62O958S6 and total molecular weight ~45 kDa.

Peginesatide does not induce any cytochrome P450s and according to in-vitro protein-binding studies does not bind serum albumin or lipoproteins. The half-life of Peginesatide following intravenous administration is 25.0 ± 7.6 hours in healthy subjects and 47.9 ± 16.5 hours in dialysis patients. Clearance is 0.5 ± 0.2 mL/hr.kg and the mean volume of distribution is 34.9 ± 13.8 mL/kg. Peginesatide is mainly cleared through the urine and a study using radio-labelled Peginesatide indicates that it is not excreted unchanged.

Peginesatide has a black box warning and adverse reactions include increased risk for death, myocardial infarcts, stroke, venous thromboembolism, thrombosis of vascular access and tumor progression or recurrence.

An advantage of Peginesatide over other ESAs is that it can be administered at monthly intervals. Given the adverse reactions, the dosage recommendation is to individualize dosing and give the lowest dose that is sufficient to reduce the need for blood transfusions. 0.04 mg/kg is the recommended dose for probing patient response.

Peginesatide was developed by Affymax and Tekeda Pharmaceuticals and is marketed under the trade name Omontys.

Full prescribing information can be found here.

Comments

Popular posts from this blog

ChEMBL 34 is out!

We are delighted to announce the release of ChEMBL 34, which includes a full update to drug and clinical candidate drug data. This version of the database, prepared on 28/03/2024 contains:         2,431,025 compounds (of which 2,409,270 have mol files)         3,106,257 compound records (non-unique compounds)         20,772,701 activities         1,644,390 assays         15,598 targets         89,892 documents Data can be downloaded from the ChEMBL FTP site:  https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_34/ Please see ChEMBL_34 release notes for full details of all changes in this release:  https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_34/chembl_34_release_notes.txt New Data Sources European Medicines Agency (src_id = 66): European Medicines Agency's data correspond to EMA drugs prior to 20 January 2023 (excluding vaccines). 71 out of the 882 newly added EMA drugs are only authorised by EMA, rather than from other regulatory bodies e.g.

New SureChEMBL announcement

(Generated with DALL-E 3 ∙ 30 October 2023 at 1:48 pm) We have some very exciting news to report: the new SureChEMBL is now available! Hooray! What is SureChEMBL, you may ask. Good question! In our portfolio of chemical biology services, alongside our established database of bioactivity data for drug-like molecules ChEMBL , our dictionary of annotated small molecule entities ChEBI , and our compound cross-referencing system UniChem , we also deliver a database of annotated patents! Almost 10 years ago , EMBL-EBI acquired the SureChem system of chemically annotated patents and made this freely accessible in the public domain as SureChEMBL. Since then, our team has continued to maintain and deliver SureChEMBL. However, this has become increasingly challenging due to the complexities of the underlying codebase. We were awarded a Wellcome Trust grant in 2021 to completely overhaul SureChEMBL, with a new UI, backend infrastructure, and new f

Accessing SureChEMBL data in bulk

It is the peak of the summer (at least in this hemisphere) and many of our readers/users will be on holiday, perhaps on an island enjoying the sea. Luckily, for the rest of us there is still the 'sea' of SureChEMBL data that awaits to be enjoyed and explored for hidden 'treasures' (let me know if I pushed this analogy too far). See here and  here for a reminder of SureChEMBL is and what it does.  This wealth of (big) data can be accessed via the SureChEMBL interface , where users can submit quite sophisticated and granular queries by combining: i) Lucene fields against full-text and bibliographic metadata and ii) advanced structure query features against the annotated compound corpus. Examples of such queries will be the topic of a future post. Once the search results are back, users can browse through and export the chemistry from the patent(s) of interest. In addition to this functionality, we've been receiving user requests for  local (behind the

New Drug Approvals - Pt. XVII - Telavancin (Vibativ)

The latest new drug approval, on 11th September 2009 was Telavancin - which was approved for the treatment of adults with complicated skin and skin structure infections (cSSSI) caused by susceptible Gram-positive bacteria , including Staphylococcus aureus , both methicillin-resistant (MRSA) and methicillin-susceptible (MSSA) strains. Telavancin is also active against Streptococcus pyogenes , Streptococcus agalactiae , Streptococcus anginosus group (includes S. anginosus, S. intermedius and S. constellatus ) and Enterococcus faecalis (vancomycin susceptible isolates only). Telavancin is a semisynthetic derivative of Vancomycin. Vancomycin itself is a natural product drug, isolated originally from soil samples in Borneo, and is produced by controlled fermentation of Amycolatopsis orientalis - a member of the Actinobacteria . Telavancin has a dual mechanism of action, firstly it inhibits bacterial cell wall synthesis by interfering with the polymerization and cross-linking of peptid

A python client for accessing ChEMBL web services

Motivation The CheMBL Web Services provide simple reliable programmatic access to the data stored in ChEMBL database. RESTful API approaches are quite easy to master in most languages but still require writing a few lines of code. Additionally, it can be a challenging task to write a nontrivial application using REST without any examples. These factors were the motivation for us to write a small client library for accessing web services from Python. Why Python? We choose this language because Python has become extremely popular (and still growing in use) in scientific applications; there are several Open Source chemical toolkits available in this language, and so the wealth of ChEMBL resources and functionality of those toolkits can be easily combined. Moreover, Python is a very web-friendly language and we wanted to show how easy complex resource acquisition can be expressed in Python. Reinventing the wheel? There are already some libraries providing access to ChEMBL d